- Таобао
- Книги / Журналы/ Газеты
- Общественные науки
- Социология
- 586408827604
[Прямая доставка издательского дома] Метод статистического анализа MedCALC и применение программного обеспечения MedCALC1 Введение Учебное пособие MEDCALC Статистика медицинских биологических данных ROC Анализ Анализ Приложение Метатистика Кредит Кредит Кредит Кредит
Цена: 815руб. (¥45.3)
Артикул: 586408827604
Вес товара: ~0.7 кг. Указан усредненный вес, который может отличаться от фактического. Не включен в цену, оплачивается при получении.
PGRpdj48aW1nPltodHRwczovL2Fzc2V0cy5hbGljZG4uY29tL2tpc3N5LzEuMC4wL2J1aWxkL2ltZ2xhenlsb2FkL3NwYWNlYmFsbC5naWZdPGJyPjx0eHQ+WyAgICDllYblk4Hlj4LmlbAgICBdPC90eHQ+PGJyPjx0eHQ+W01lZENhbGPnu5/orqHliIbmnpDmlrnms5Xlj4rlupTnlKhdPC90eHQ+PGJyPjxpbWcgc2l6ZT0iMzUweDM1MCI+W2h0dHBzOi8vaW1nLmFsaWNkbi5jb20vaW1nZXh0cmEvaTQvNDA5MzA1MjIwNi9PMUNOMDFhMUpGU1YxU0FPRFFNVEpzOV8hITQwOTMwNTIyMDYuanBnXTxicj48dHh0Plsg5a6a5Lu3IF08L3R4dD48YnI+PHR4dD41OS4wMDwvdHh0Pjxicj48dHh0Plsg5Ye654mI56S+IF08L3R4dD48YnI+PHR4dD5b55S15a2Q5bel5Lia5Ye654mI56S+XTwvdHh0Pjxicj48dHh0Plsg54mI5qyhIF08L3R4dD48YnI+PHR4dD4xPC90eHQ+PGJyPjx0eHQ+WyDlh7rniYjml7bpl7QgXTwvdHh0Pjxicj48dHh0PlsyMDE45bm0MDXmnIhdPC90eHQ+PGJyPjx0eHQ+WyDlvIDmnKwgXTwvdHh0Pjxicj48dHh0PlsxNuW8gF08L3R4dD48YnI+PHR4dD5bIOS9nOiAhSBdPC90eHQ+PGJyPjx0eHQ+W+adjuW/l+i+ie+8jOadnOW/l+aIkF08L3R4dD48YnI+PHR4dD5bIOijheW4pyBdPC90eHQ+PGJyPjx0eHQ+W+W5s+ijhS3og7borqJdPC90eHQ+PGJyPjx0eHQ+WyDpobXmlbAgXTwvdHh0Pjxicj48dHh0PjMwODwvdHh0Pjxicj48dHh0Plsg5a2X5pWwIF08L3R4dD48YnI+PHR4dD41MDYwMDA8L3R4dD48YnI+PHR4dD5bIElTQk7nvJbnoIEgXTwvdHh0Pjxicj48dHh0Pjk3ODcxMjEzMzg2OTQ8L3R4dD48YnI+PGltZz5baHR0cHM6Ly9hc3NldHMuYWxpY2RuLmNvbS9raXNzeS8xLjAuMC9idWlsZC9pbWdsYXp5bG9hZC9zcGFjZWJhbGwuZ2lmXTxicj48dHh0PlsgICAg55uu5b2VICAgXTwvdHh0Pjxicj48dHh0PltkeSDnq6AgIE1lZENhbGPlhaXpl6hdPC90eHQ+PGJyPjx0eHQ+MTwvdHh0Pjxicj48dHh0PlsxLjEgIE1lZENhbGPkuLvopoHlip/og71dPC90eHQ+PGJyPjx0eHQ+MTwvdHh0Pjxicj48dHh0PlsxLjEuMSAg6LWE5paZ566h55CG5LiO6K6h566XXTwvdHh0Pjxicj48dHh0PjE8L3R4dD48YnI+PHR4dD5bMS4xLjIgIOe7n+iuoeWKn+iDvV08L3R4dD48YnI+PHR4dD4xPC90eHQ+PGJyPjx0eHQ+WzEuMS4zICDnu5/orqHlm77lvaJdPC90eHQ+PGJyPjx0eHQ+MzwvdHh0Pjxicj48dHh0PlsxLjIgIE1lZENhbGPnlYzpnaJdPC90eHQ+PGJyPjx0eHQ+MzwvdHh0Pjxicj48dHh0PlsxLjIuMSAg5Li756qX5Y+jXTwvdHh0Pjxicj48dHh0PjM8L3R4dD48YnI+PHR4dD5bMS4yLjIgIOWvueivneahhl08L3R4dD48YnI+PHR4dD41PC90eHQ+PGJyPjx0eHQ+WzEuMi4zICDlvLnlh7rlr7nor53moYZdPC90eHQ+PGJyPjx0eHQ+NjwvdHh0Pjxicj48dHh0PlsxLjIuNCAg5Lit6Iux5paH55WM6Z2i55qE6K6+572uXTwvdHh0Pjxicj48dHh0Pjc8L3R4dD48YnI+PHR4dD5bMS4zICBNZWRDYWxj5pSv5oyB55qE5pWw5o2u57G75Z6LXTwvdHh0Pjxicj48dHh0Pjc8L3R4dD48YnI+PHR4dD5bMS40ICBNZWRDYWxj5paH5Lu257G75Z6LXTwvdHh0Pjxicj48dHh0Pjg8L3R4dD48YnI+PHR4dD5bMS41ICBNZWRDYWxj5bel5L2c6KGo55qE5Z+65pys5pON5L2c5ZKM5pWw5o2u5b2V5YWlXTwvdHh0Pjxicj48dHh0Pjk8L3R4dD48YnI+PHR4dD5bMS41LjEgIOW3peS9nOihqOS7i+e7jV08L3R4dD48YnI+PHR4dD45PC90eHQ+PGJyPjx0eHQ+WzEuNS4yICDmlbDmja7ovpPlhaXlrp7kvotdPC90eHQ+PGJyPjx0eHQ+MTA8L3R4dD48YnI+PHR4dD5bMS41LjMgIOiuvue9ruaVsOaNruexu+Wei108L3R4dD48YnI+PHR4dD4xMTwvdHh0Pjxicj48dHh0PlvnrKwy56ugICDmlbDmja7nrqHnkIZdPC90eHQ+PGJyPjx0eHQ+MTI8L3R4dD48YnI+PHR4dD5bMi4xICDmjInooYzmjpLluo9dPC90eHQ+PGJyPjx0eHQ+MTI8L3R4dD48YnI+PHR4dD5bMi4yICDmjpLpmaTmlbDmja5dPC90eHQ+PGJyPjx0eHQ+MTI8L3R4dD48YnI+PHR4dD5bMi4zICDloavlhYXliJddPC90eHQ+PGJyPjx0eHQ+MTM8L3R4dD48YnI+PHR4dD5bMi40ICDloIblj6DliJddPC90eHQ+PGJyPjx0eHQ+MTQ8L3R4dD48YnI+PHR4dD5bMi41ICDliJvlu7rpmo/mnLrmoLfmnKxdPC90eHQ+PGJyPjx0eHQ+MTY8L3R4dD48YnI+PHR4dD5bMi42ICDliJvlu7rnu4RdPC90eHQ+PGJyPjx0eHQ+MTc8L3R4dD48YnI+PHR4dD5bMi42LjEgIOWIm+W7uuWIhuS9jeaVsOe7hF08L3R4dD48YnI+PHR4dD4xNzwvdHh0Pjxicj48dHh0PlsyLjYuMiAg5Yib5bu66ZqP5py657uEXTwvdHh0Pjxicj48dHh0PjE4PC90eHQ+PGJyPjx0eHQ+WzIuNi4zICDliJvlu7rnlKjmiLflrprkuYnnu4RdPC90eHQ+PGJyPjx0eHQ+MTg8L3R4dD48YnI+PHR4dD5bMi43ICDkuKrmoYjmjpLnp6ldPC90eHQ+PGJyPjx0eHQ+MTk8L3R4dD48YnI+PHR4dD5bMi44ICDnmb7liIbkvY3mlbDmjpLnp6ldPC90eHQ+PGJyPjx0eHQ+MjA8L3R4dD48YnI+PHR4dD5bMi45ICDorqHnrpd65b6X5YiGXTwvdHh0Pjxicj48dHh0PjIwPC90eHQ+PGJyPjx0eHQ+WzIuMTAgIOW5guWPmOaNol08L3R4dD48YnI+PHR4dD4yMTwvdHh0Pjxicj48dHh0PlsyLjExICDnl4Xkvost5a+554Wn5Yy56YWNXTwvdHh0Pjxicj48dHh0PjIyPC90eHQ+PGJyPjx0eHQ+WzIuMTIgIOe8lui+keWPmOmHj+WIl+ihqF08L3R4dD48YnI+PHR4dD4yNDwvdHh0Pjxicj48dHh0PlsyLjEzICDnvJbovpHnrZvpgInmnaHku7bliJfooahdPC90eHQ+PGJyPjx0eHQ+MjU8L3R4dD48YnI+PHR4dD5bMi4xNCAg5Liq5qGI5qCH6K+G5Y+Y6YePXTwvdHh0Pjxicj48dHh0PjI2PC90eHQ+PGJyPjx0eHQ+WzIuMTUgIOiuvuWumuaVsOaNrui+k+WFpeaWueWQkV08L3R4dD48YnI+PHR4dD4yNzwvdHh0Pjxicj48dHh0PlvnrKwz56ugICDorqHph4/otYTmlpnnmoTnu5/orqHmj4/ov7DkuI7mraPmgIHmgKfmo4DpqoxdPC90eHQ+PGJyPjx0eHQ+Mjg8L3R4dD48YnI+PHR4dD5bMy4xICDorqHph4/otYTmlpnnmoTmsYfmgLvnu5/orqHph49dPC90eHQ+PGJyPjx0eHQ+Mjg8L3R4dD48YnI+PHR4dD5bMy4xLjEgIOWOn+Wni+i1hOaWmeeahOaxh+aAu+e7n+iuoemHj+S4juato+aAgeaAp+ajgOmqjF08L3R4dD48YnI+PHR4dD4yODwvdHh0Pjxicj48dHh0PlszLjEuMiAg5a+55pWw5Y+Y5o2i6LWE5paZ55qE5rGH5oC757uf6K6h6YePXTwvdHh0Pjxicj48dHh0PjM1PC90eHQ+PGJyPjx0eHQ+WzMuMiAg6K6h6YeP6LWE5paZ55qE5byC5bi45YC85qOA5rWLXTwvdHh0Pjxicj48dHh0PjM2PC90eHQ+PGJyPjx0eHQ+WzMuMyAg5YiG5biD5Zu+XTwvdHh0Pjxicj48dHh0PjM5PC90eHQ+PGJyPjx0eHQ+WzMuMy4xICDnm7Tmlrnlm75dPC90eHQ+PGJyPjx0eHQ+Mzk8L3R4dD48YnI+PHR4dD5bMy4zLjIgIOe0r+enr+mikeeOh+WIhuW4g+Wbvl08L3R4dD48YnI+PHR4dD40MDwvdHh0Pjxicj48dHh0PlszLjMuMyAg5q2j5oCB5Zu+5LiOUS1R5Zu+XTwvdHh0Pjxicj48dHh0PjQzPC90eHQ+PGJyPjx0eHQ+WzMuMy40ICDngrnlm75dPC90eHQ+PGJyPjx0eHQ+NDQ8L3R4dD48YnI+PHR4dD5bMy4zLjUgIOeuseW9ouWbvl08L3R4dD48YnI+PHR4dD40NjwvdHh0Pjxicj48dHh0PlvnrKw056ugICDliIbnsbvotYTmlpnnmoTnu5/orqHliIbmnpBdPC90eHQ+PGJyPjx0eHQ+NDg8L3R4dD48YnI+PHR4dD5bNC4xICDPhzLmo4DpqoxdPC90eHQ+PGJyPjx0eHQ+NDg8L3R4dD48YnI+PHR4dD5bNC4xLjEgIOWNleWPmOmHj8+HMuaLn+WQiOS8mOW6puajgOmqjF08L3R4dD48YnI+PHR4dD40ODwvdHh0Pjxicj48dHh0Pls0LjEuMiAg5Lik54us56uL5qC35pys55qEUGVhcnNvbiDPhzLmo4DpqoxdPC90eHQ+PGJyPjx0eHQ+NTA8L3R4dD48YnI+PHR4dD5bNC4xLjMgIOacieW6j1LDlzLooajotYTmlpnnmoTPhzLotovlir/mo4DpqoxdPC90eHQ+PGJyPjx0eHQ+NTM8L3R4dD48YnI+PHR4dD5bNC4yICDlm5vmoLzooajotYTmlpnnmoRGaXNoZXIg5qOA6aqMXTwvdHh0Pjxicj48dHh0PjUzPC90eHQ+PGJyPjx0eHQ+WzQuMi4xICDljp/lp4votYTmlpnnmoRGaXNoZXIg5qOA6aqMXTwvdHh0Pjxicj48dHh0PjU0PC90eHQ+PGJyPjx0eHQ+WzQuMi4yICDmsYfmgLvotYTmlpnnmoRGaXNoZXIg5qOA6aqMXTwvdHh0Pjxicj48dHh0PjU0PC90eHQ+PGJyPjx0eHQ+WzQuMyAg6YWN5a+55Zub5qC86KGo6LWE5paZ55qETWNOZW1hcuajgOmqjF08L3R4dD48YnI+PHR4dD41NTwvdHh0Pjxicj48dHh0Pls0LjMuMSAg5Y6f5aeL6LWE5paZ55qETWNOZW1hcuajgOmqjF08L3R4dD48YnI+PHR4dD41NTwvdHh0Pjxicj48dHh0Pls0LjMuMiAg5rGH5oC76LWE5paZ55qETWNOZW1hcuajgOmqjF08L3R4dD48YnI+PHR4dD41NjwvdHh0Pjxicj48dHh0Pls0LjQgIOWujOWFqOmaj+acuuWMuue7hOiuvuiuoeS6jOWIhuexu+i1hOaWmeeahENvY2hyYW4gUeajgOmqjF08L3R4dD48YnI+PHR4dD41NzwvdHh0Pjxicj48dHh0Pls0LjUgIOWbm+agvOihqOi1hOaWmeeahOebuOWvueWNsemZqeW6puS4juS8mOWKv+avlF08L3R4dD48YnI+PHR4dD41ODwvdHh0Pjxicj48dHh0Pls0LjUuMSAg6Zif5YiX56CU56m255qE55u45a+55Y2x6Zmp5bqmXTwvdHh0Pjxicj48dHh0PjU4PC90eHQ+PGJyPjx0eHQ+WzQuNS4yICDkuLTluoror5XpqoznmoTpnIDmsrvnlpfkurrmlbBdPC90eHQ+PGJyPjx0eHQ+NjA8L3R4dD48YnI+PHR4dD5bNC41LjMgIOeXheS+iy3lr7nnhafnoJTnqbbnmoTkvJjlir/mr5RdPC90eHQ+PGJyPjx0eHQ+NjI8L3R4dD48YnI+PHR4dD5bNC42ICDliIbnsbvotYTmlpnnmoTmnaHlm75dPC90eHQ+PGJyPjx0eHQ+NjQ8L3R4dD48YnI+PHR4dD5bNC42LjEgIOeugOWNleadoeWbvl08L3R4dD48YnI+PHR4dD42NDwvdHh0Pjxicj48dHh0Pls0LjYuMiAg5aSN5byP5p2h5Zu+XTwvdHh0Pjxicj48dHh0PjY1PC90eHQ+PGJyPjx0eHQ+WzQuNi4zICDliIbmrrXmnaHlm75dPC90eHQ+PGJyPjx0eHQ+NjY8L3R4dD48YnI+PHR4dD5bNC42LjQgIOaehOaIkOavlOadoeWbvl08L3R4dD48YnI+PHR4dD42NzwvdHh0Pjxicj48dHh0PlvnrKw156ugICDnm7jlr7nmlbDnmoTkvLDorqHkuI7mr5TovoNdPC90eHQ+PGJyPjx0eHQ+Njg8L3R4dD48YnI+PHR4dD5bNS4xICDmr5TkvovnmoTkvLDorqHkuI7mr5TovoNdPC90eHQ+PGJyPjx0eHQ+Njg8L3R4dD48YnI+PHR4dD5bNS4xLjEgIOWNleS4quavlOS+i+eahOWMuumXtOS8sOiuoeS4juajgOmqjF08L3R4dD48YnI+PHR4dD42ODwvdHh0Pjxicj48dHh0Pls1LjEuMiAg5Lik5Liq54us56uL5qC35pys5q+U5L6L55qE5q+U6L6DXTwvdHh0Pjxicj48dHh0PjY5PC90eHQ+PGJyPjx0eHQ+WzUuMiAg5q+U546H55qE5Yy66Ze05Lyw6K6h5LiO5qOA6aqMXTwvdHh0Pjxicj48dHh0PjY5PC90eHQ+PGJyPjx0eHQ+WzUuMi4xICDmr5TnjofnmoTnva7kv6HljLrpl7RdPC90eHQ+PGJyPjx0eHQ+Njk8L3R4dD48YnI+PHR4dD5bNS4yLjIgIOS4pOS4queLrOeri+agt+acrOavlOeOh+eahOavlOi+g108L3R4dD48YnI+PHR4dD43MTwvdHh0Pjxicj48dHh0PlvnrKw256ugICDmlrnlt67pvZDmgKfmo4Dpqozlkox05qOA6aqMXTwvdHh0Pjxicj48dHh0PjcyPC90eHQ+PGJyPjx0eHQ+WzYuMSAg54us56uL5qC35pys5pa55beu6b2Q5oCn55qERuajgOmqjF08L3R4dD48YnI+PHR4dD43MjwvdHh0Pjxicj48dHh0Pls2LjEuMSAg5Y6f5aeL6LWE5paZ5pa55beu6b2Q5oCn55qERuajgOmqjF08L3R4dD48YnI+PHR4dD43MjwvdHh0Pjxicj48dHh0Pls2LjEuMiAg5rGH5oC76LWE5paZ5pa55beu6b2Q5oCn55qERuajgOmqjF08L3R4dD48YnI+PHR4dD43MzwvdHh0Pjxicj48dHh0Pls2LjIgIOWNleagt+acrHTmo4DpqoxdPC90eHQ+PGJyPjx0eHQ+NzQ8L3R4dD48YnI+PHR4dD5bNi4yLjEgIOWOn+Wni+i1hOaWmeeahOWNleagt+acrHTmo4DpqoxdPC90eHQ+PGJyPjx0eHQ+NzQ8L3R4dD48YnI+PHR4dD5bNi4yLjIgIOaxh+aAu+i1hOaWmeeahOWNleagt+acrHTmo4DpqoxdPC90eHQ+PGJyPjx0eHQ+NzU8L3R4dD48YnI+PHR4dD5bNi4zICDni6znq4vmoLfmnKx05qOA6aqMXTwvdHh0Pjxicj48dHh0Pjc2PC90eHQ+PGJyPjx0eHQ+WzYuMy4xICDmlrnlt67pvZDmgKfotYTmlpnnmoTni6znq4vmoLfmnKx05qOA6aqMXTwvdHh0Pjxicj48dHh0Pjc2PC90eHQ+PGJyPjx0eHQ+WzYuMy4yICDmlrnlt67kuI3pvZDotYTmlpnnmoTni6znq4vmoLfmnKx077yHIOajgOmqjF08L3R4dD48YnI+PHR4dD43OTwvdHh0Pjxicj48dHh0Pls2LjMuMyAg5Yeg5L2V5bmz5Z2H5YC855qE54us56uL5qC35pysdOajgOmqjF08L3R4dD48YnI+PHR4dD44MDwvdHh0Pjxicj48dHh0Pls2LjMuNCAg5rGH5oC76LWE5paZ55qE54us56uL5qC35pysdOajgOmqjF08L3R4dD48YnI+PHR4dD44MjwvdHh0Pjxicj48dHh0Pls2LjQgIOmFjeWvueagt+acrHTmo4DpqoxdPC90eHQ+PGJyPjx0eHQ+ODM8L3R4dD48YnI+PHR4dD5b56ysN+eroCAg5pa55beu5YiG5p6QXTwvdHh0Pjxicj48dHh0Pjg2PC90eHQ+PGJyPjx0eHQ+WzcuMSAg5a6M5YWo6ZqP5py66K6+6K6h6LWE5paZ55qE5Y2V5Zug57Sg5pa55beu5YiG5p6QXTwvdHh0Pjxicj48dHh0Pjg2PC90eHQ+PGJyPjx0eHQ+WzcuMiAgQcOXQuaekOWboOiuvuiuoei1hOaWmeeahOaWueW3ruWIhuaekF08L3R4dD48YnI+PHR4dD44OTwvdHh0Pjxicj48dHh0Pls3LjIuMSAg5peg5Lqk5LqS5pWI5bqU55qEQcOXQuaekOWboOiuvuiuoei1hOaWmeeahOaWueW3ruWIhuaekF08L3R4dD48YnI+PHR4dD45MDwvdHh0Pjxicj48dHh0Pls3LjIuMiAg5pyJ5Lqk5LqS5pWI5bqU55qEQcOXQuaekOWboOiuvuiuoei1hOaWmeeahOaWueW3ruWIhuaekF08L3R4dD48YnI+PHR4dD45NDwvdHh0Pjxicj48dHh0Pls3LjMgIOWNj+aWueW3ruWIhuaekF08L3R4dD48YnI+PHR4dD45NjwvdHh0Pjxicj48dHh0Pls3LjMuMSAg5a6M5YWo6ZqP5py66K6+6K6h6LWE5paZ55qE5Y2P5pa55beu5YiG5p6QXTwvdHh0Pjxicj48dHh0Pjk2PC90eHQ+PGJyPjx0eHQ+WzcuMy4yICBBw5dC5p6Q5Zug6K6+6K6h6LWE5paZ55qE5Y2P5pa55beu5YiG5p6QXTwvdHh0Pjxicj48dHh0Pjk5PC90eHQ+PGJyPjx0eHQ+WzcuMy4yICDlpJrlhYPljY/mlrnlt67liIbmnpBdPC90eHQ+PGJyPjx0eHQ+MTAwPC90eHQ+PGJyPjx0eHQ+WzcuNCAg6YeN5aSN5rWL6YeP6K6+6K6h6LWE5paZ55qE5pa55beu5YiG5p6QXTwvdHh0Pjxicj48dHh0PjEwMjwvdHh0Pjxicj48dHh0Pls3LjQuMSAg5Y2V57uE6YeN5aSN5rWL6YeP6LWE5paZ55qE5pa55beu5YiG5p6QXTwvdHh0Pjxicj48dHh0PjEwMjwvdHh0Pjxicj48dHh0Pls3LjQuMiAg5peg5Lqk5LqS5pWI5bqU5Lik5Zug57Sg6YeN5aSN5rWL6YeP6K6+6K6h6LWE5paZ55qE5pa55beu5YiG5p6QXTwvdHh0Pjxicj48dHh0PjEwNTwvdHh0Pjxicj48dHh0Pls3LjQuMiAg5pyJ5Lqk5LqS5pWI5bqU5Lik5Zug57Sg6YeN5aSN5rWL6YeP6K6+6K6h6LWE5paZ55qE5pa55beu5YiG5p6QXTwvdHh0Pjxicj48dHh0PjEwNzwvdHh0Pjxicj48dHh0PlvnrKw456ugICDpnZ7lj4LmlbDmo4DpqoxdPC90eHQ+PGJyPjx0eHQ+MTExPC90eHQ+PGJyPjx0eHQ+WzguMSAg5Y2V5qC35pys56ym5Y+356ep5ZKM5qOA6aqMXTwvdHh0Pjxicj48dHh0PjExMTwvdHh0Pjxicj48dHh0Pls4LjIgIOeLrOeri+agt+acrOeahE1hbm4tV2hpdG5leSDmo4DpqoxdPC90eHQ+PGJyPjx0eHQ+MTEyPC90eHQ+PGJyPjx0eHQ+WzguMyAg6YWN5a+55qC35pys55qEV2lsY294b27nrKblj7fnp6nlkozmo4DpqoxdPC90eHQ+PGJyPjx0eHQ+MTE0PC90eHQ+PGJyPjx0eHQ+WzguNCAg5Lik5Liq5oiW5aSa5Liq54us56uL5qC35pys55qES3J1c2thbC1XYWxsaXPmo4DpqoxdPC90eHQ+PGJyPjx0eHQ+MTE2PC90eHQ+PGJyPjx0eHQ+WzguNSAg5aSa5Liq5pyJ5bqP5YiG57G75qC35pys55qESm9uY2toZWVyZS1UZXJwc3RyYei2i+WKv+ajgOmqjF08L3R4dD48YnI+PHR4dD4xMTk8L3R4dD48YnI+PHR4dD5bOC42ICDpmo/mnLrljJbljLrnu4Torr7orqHotYTmlpnnmoRGcmllZG1hbuajgOmqjF08L3R4dD48YnI+PHR4dD4xMjA8L3R4dD48YnI+PHR4dD5b56ysOeeroCAg55u45YWz5YiG5p6QXTwvdHh0Pjxicj48dHh0PjEyMzwvdHh0Pjxicj48dHh0Pls5LjEgIOaVo+eCueWbvl08L3R4dD48YnI+PHR4dD4xMjM8L3R4dD48YnI+PHR4dD5bOS4xLjEgIOWMheWQq+WbnuW9kue6v+eahOeugOWNleaVo+eCueWbvl08L3R4dD48YnI+PHR4dD4xMjM8L3R4dD48YnI+PHR4dD5bOS4xLjIgIOWMheWQq0xPRVNT5bmz5ruR6LaL5Yq/57q/55qE5pWj54K55Zu+XTwvdHh0Pjxicj48dHh0PjEyNTwvdHh0Pjxicj48dHh0Pls5LjEuMyAg5YyF5ZCr5Zue5b2S57q/55qE5aSN5byP5pWj54K55Zu+XTwvdHh0Pjxicj48dHh0PjEyNzwvdHh0Pjxicj48dHh0Pls5LjIgIFBlYXJzb27nm7jlhbPliIbmnpBdPC90eHQ+PGJyPjx0eHQ+MTI4PC90eHQ+PGJyPjx0eHQ+WzkuMyAg5Lik5Liq54us56uL5qC35pys55u45YWz57O75pWw5beu5byC55qE5YGH6K6+5qOA6aqMXTwvdHh0Pjxicj48dHh0PjEzMDwvdHh0Pjxicj48dHh0Pls5LjQgIOWBj+ebuOWFs+WIhuaekF08L3R4dD48YnI+PHR4dD4xMzE8L3R4dD48YnI+PHR4dD5bOS41ICDnrYnnuqfnm7jlhbPliIbmnpBdPC90eHQ+PGJyPjx0eHQ+MTMzPC90eHQ+PGJyPjx0eHQ+WzkuNS4xICBTcGVhcm1hbuetiee6p+ebuOWFs+WIhuaekF08L3R4dD48YnI+PHR4dD4xMzM8L3R4dD48YnI+PHR4dD5bOS41LjIgIEtlbmRhbGzns7vmlbDkuIDoh7TmgKfor4Tku7ddPC90eHQ+PGJyPjx0eHQ+MTM0PC90eHQ+PGJyPjx0eHQ+W2R5IDDnq6AgIOWbnuW9kl08L3R4dD48YnI+PHR4dD4xMzY8L3R4dD48YnI+PHR4dD5bMTAuMSAg5bim5Zue5b2S57q/55qE5pWj54K55Zu+XTwvdHh0Pjxicj48dHh0PjEzNjwvdHh0Pjxicj48dHh0PlsxMC4xLjEgIOW4pueugOWNleWbnuW9kue6v+eahOaVo+eCueWbvl08L3R4dD48YnI+PHR4dD4xMzY8L3R4dD48YnI+PHR4dD5bMTAuMS4yICDluKbmm7Lnur/lm57lvZLnur/nmoTmlaPngrnlm75dPC90eHQ+PGJyPjx0eHQ+MTM4PC90eHQ+PGJyPjx0eHQ+WzEwLjIgIOS4pOWPmOmHj+mXtOeahOWbnuW9kuWIhuaekF08L3R4dD48YnI+PHR4dD4xNDQ8L3R4dD48YnI+PHR4dD5bMTAuMi4xICDkuKTlj5jph4/nmoTnur/mgKflm57lvZLliIbmnpBdPC90eHQ+PGJyPjx0eHQ+MTQ0PC90eHQ+PGJyPjx0eHQ+WzEwLjIuMiAg5Lik5p2h5Zue5b2S55u057q/55qE5q+U6L6DXTwvdHh0Pjxicj48dHh0PjE0NjwvdHh0Pjxicj48dHh0PlsxMC4yLjMgIOabsue6v+aLn+WQiF08L3R4dD48YnI+PHR4dD4xNDg8L3R4dD48YnI+PHR4dD5bMTAuMyAg5aSa6YeN57q/5oCn5Zue5b2SXTwvdHh0Pjxicj48dHh0PjE0ODwvdHh0Pjxicj48dHh0PlsxMC4zLjEgIOW8uui/q+W8leWFpeazlV08L3R4dD48YnI+PHR4dD4xNDk8L3R4dD48YnI+PHR4dD5bMTAuMy4yICDpgJDmraXlm57lvZLms5VdPC90eHQ+PGJyPjx0eHQ+MTUxPC90eHQ+PGJyPjx0eHQ+WzEwLjQgIOS6jOWAvExvZ2lzdGlj5Zue5b2SXTwvdHh0Pjxicj48dHh0PjE1MzwvdHh0Pjxicj48dHh0PlsxMC41ICDliYLph4/lj43lupTnmoTmpoLnjofljZXkvY3lm57lvZJdPC90eHQ+PGJyPjx0eHQ+MTU3PC90eHQ+PGJyPjx0eHQ+WzEwLjUuMSAg5Y6f5aeL6LWE5paZ55qE5qaC546H5Y2V5L2N5Zue5b2SXTwvdHh0Pjxicj48dHh0PjE1ODwvdHh0Pjxicj48dHh0PlsxMC41LjIgIOaxh+aAu+i1hOaWmeeahOamgueOh+WNleS9jeWbnuW9kl08L3R4dD48YnI+PHR4dD4xNjA8L3R4dD48YnI+PHR4dD5bMTAuNiAg6Z2e57q/5oCn5Zue5b2SXTwvdHh0Pjxicj48dHh0PjE2MjwvdHh0Pjxicj48dHh0PltkeSAx56ugICDnlJ/lrZjliIbmnpBdPC90eHQ+PGJyPjx0eHQ+MTY2PC90eHQ+PGJyPjx0eHQ+WzExLjEgIEthcGxhbi1NZWllcueUn+WtmOWIhuaekF08L3R4dD48YnI+PHR4dD4xNjc8L3R4dD48YnI+PHR4dD5bMTEuMS4xICDljZXmoLfmnKznlJ/lrZjotYTmlpnnmoRLYXBsYW4tTWVpZXLms5VdPC90eHQ+PGJyPjx0eHQ+MTY3PC90eHQ+PGJyPjx0eHQ+WzExLjEuMiAg55Sf5a2Y5puy57q/5q+U6L6D55qEbG9nIHJhbmvmo4DpqoxdPC90eHQ+PGJyPjx0eHQ+MTY5PC90eHQ+PGJyPjx0eHQ+WzExLjEuMyAg55Sf5a2Y5puy57q/55qEbG9nIHJhbmvotovlir/mo4DpqoxdPC90eHQ+PGJyPjx0eHQ+MTcxPC90eHQ+PGJyPjx0eHQ+WzExLjIgIENveOavlOS+i+mjjumZqeWbnuW9kuaooeWei108L3R4dD48YnI+PHR4dD4xNzM8L3R4dD48YnI+PHR4dD5bMTEuMi4xICBDb3jlm57lvZJQSOWBh+WumueahOWIpOWumuaWueazlV08L3R4dD48YnI+PHR4dD4xNzM8L3R4dD48YnI+PHR4dD5bMTEuMi4yICDlu7rnq4tDb3jmr5Tkvovpo47pmanlm57lvZLmqKHlnotdPC90eHQ+PGJyPjx0eHQ+MTc1PC90eHQ+PGJyPjx0eHQ+W2R5IDLnq6AgIE1ldGHliIbmnpBdPC90eHQ+PGJyPjx0eHQ+MTgwPC90eHQ+PGJyPjx0eHQ+WzEyLjEgIE1ldGHliIbmnpDmpoLov7BdPC90eHQ+PGJyPjx0eHQ+MTgwPC90eHQ+PGJyPjx0eHQ+WzEyLjIgIOi/nue7reWei+i1hOaWmeeahE1ldGHliIbmnpBdPC90eHQ+PGJyPjx0eHQ+MTgxPC90eHQ+PGJyPjx0eHQ+WzEyLjMgIOebuOWFs+ezu+aVsOeahE1ldGHliIbmnpBdPC90eHQ+PGJyPjx0eHQ+MTg1PC90eHQ+PGJyPjx0eHQ+WzEyLjQgIOavlOS+i+eahE1ldGHliIbmnpBdPC90eHQ+PGJyPjx0eHQ+MTg3PC90eHQ+PGJyPjx0eHQ+WzEyLjUgIOebuOWvueWNsemZqeW6pueahE1ldGHliIbmnpBdPC90eHQ+PGJyPjx0eHQ+MTg4PC90eHQ+PGJyPjx0eHQ+WzEyLjYgIOmjjumZqeW3rueahE1ldGHliIbmnpBdPC90eHQ+PGJyPjx0eHQ+MTkxPC90eHQ+PGJyPjx0eHQ+WzEyLjcgIOS8mOWKv+avlOeahE1ldGHliIbmnpBdPC90eHQ+PGJyPjx0eHQ+MTkyPC90eHQ+PGJyPjx0eHQ+WzEyLjggIFJPQ+absue6v+S4i+mdouenr+eahE1ldGHliIbmnpBdPC90eHQ+PGJyPjx0eHQ+MTk0PC90eHQ+PGJyPjx0eHQ+WzEyLjkgIOmAmueUqOmAhuaWueW3ruazleeahE1ldGHliIbmnpBdPC90eHQ+PGJyPjx0eHQ+MTk1PC90eHQ+PGJyPjx0eHQ+W2R5IDPnq6AgIOi/nue7reebkea1i+i1hOaWmeeahOW6j+WIl+a1i+mHj+WIhuaekF08L3R4dD48YnI+PHR4dD4xOTg8L3R4dD48YnI+PHR4dD5bZHkgNOeroCAg5Yy75a2m5Y+C6ICD5YC86IyD5Zu055qE5Yi25a6aXTwvdHh0Pjxicj48dHh0PjIwMjwvdHh0Pjxicj48dHh0PlsxNC4xICDkuIDoiKzotYTmlpnnmoTljLvlrablj4LogIPlgLzojIPlm7TliLblrppdPC90eHQ+PGJyPjx0eHQ+MjAyPC90eHQ+PGJyPjx0eHQ+WzE0LjIgIOW5tOm+hOWIq+WPguiAg+WAvOiMg+WbtOeahOWItuWuml08L3R4dD48YnI+PHR4dD4yMDU8L3R4dD48YnI+PHR4dD5bZHkgNeeroCAg5pa55rOV5q+U6L6D5ZKM6K+E5Lu3XTwvdHh0Pjxicj48dHh0PjIwOTwvdHh0Pjxicj48dHh0PlsxNS4xICDov57nu63lj5jph4/kuIDoh7TmgKfor4Tku7fnmoRCbGFuZC1BbHRtYW7lm75dPC90eHQ+PGJyPjx0eHQ+MjA5PC90eHQ+PGJyPjx0eHQ+WzE1LjEuMSAg5Lik5Liq6L+e57ut5Y+Y6YeP5LiA6Ie05oCn6K+E5Lu355qEQmxhbmQtQWx0bWFu5Zu+XTwvdHh0Pjxicj48dHh0PjIxMDwvdHh0Pjxicj48dHh0PlsxNS4xLjIgIOS4pOenjea1i+mHj+aWueazleWkmuasoea1i+mHj+e7k+aenOeahEJsYW5kLUFsdG1hbuWbvl08L3R4dD48YnI+PHR4dD4yMTI8L3R4dD48YnI+PHR4dD5bMTUuMS4zICDlpJrkuKrov57nu63lj5jph4/kuIDoh7TmgKfor4Tku7fnmoRCbGFuZC1BbHRtYW7lm75dPC90eHQ+PGJyPjx0eHQ+MjE1PC90eHQ+PGJyPjx0eHQ+WzE1LjIgIOi/nue7reWPmOmHj+S4gOiHtOaAp+ivhOS7t+eahOWxseW9ouWbvl08L3R4dD48YnI+PHR4dD4yMTc8L3R4dD48YnI+PHR4dD5bMTUuMi4xICDlpJrkuKrov57nu63lj5jph4/kuIDoh7TmgKfor4Tku7fnmoTlsbHlvaLlm75dPC90eHQ+PGJyPjx0eHQ+MjE3PC90eHQ+PGJyPjx0eHQ+WzE1LjIuMiAg5LiJ5Liq6L+e57ut5Y+Y6YeP5LiA6Ie05oCn6K+E5Lu355qE5bGx5b2i5Zu+XTwvdHh0Pjxicj48dHh0PjIxODwvdHh0Pjxicj48dHh0PlsxNS4zICDkuKTkuKrov57nu63lj5jph4/kuIDoh7TmgKfor4Tku7fnmoREZW1pbmflm57lvZJdPC90eHQ+PGJyPjx0eHQ+MjE5PC90eHQ+PGJyPjx0eHQ+WzE1LjMuMSAg5Lik56eN5pa55rOV5Y2V5qyh5rWL6YeP57uT5p6c55qERGVtaW5n5Zue5b2SXTwvdHh0Pjxicj48dHh0PjIxOTwvdHh0Pjxicj48dHh0PlsxNS4zLjIgIOS4pOenjeaWueazlemHjeWkjeS4pOasoea1i+mHj+e7k+aenOeahERlbWluZ+WbnuW9kl08L3R4dD48YnI+PHR4dD4yMjE8L3R4dD48YnI+PHR4dD5bMTUuNCAg5Lik5Liq6L+e57ut5Y+Y6YeP5LiA6Ie05oCn6K+E5Lu355qEUGFzc2luZy1CYWJsb2vlm57lvZJdPC90eHQ+PGJyPjx0eHQ+MjIyPC90eHQ+PGJyPjx0eHQ+WzE1LjUgIOS4pOasoea1i+mHj+S4reeahOWPmOW8guezu+aVsF08L3R4dD48YnI+PHR4dD4yMjY8L3R4dD48YnI+PHR4dD5bMTUuNiAg5aSa5Liq6L+e57ut5Y+Y6YeP5oiW5pyJ5bqP5Y+Y6YeP5LiA6Ie05oCn6K+E5Lu355qE57G75YaF55u45YWz57O75pWwXTwvdHh0Pjxicj48dHh0PjIyNzwvdHh0Pjxicj48dHh0PlsxNS42LjEgIOWNleWboOe0oOmaj+acuuaooeWei+iuvuiuoei1hOaWmeeahElDQ108L3R4dD48YnI+PHR4dD4yMjc8L3R4dD48YnI+PHR4dD5bMTUuNi4yICDkuKTlm6DntKDmt7flkIjmqKHlnovorr7orqHotYTmlpnnmoRJQ0NdPC90eHQ+PGJyPjx0eHQ+MjI5PC90eHQ+PGJyPjx0eHQ+WzE1LjYuMyAg5Lik5Zug57Sg6ZqP5py65qih5Z6L6K6+6K6h6LWE5paZ55qESUNDXTwvdHh0Pjxicj48dHh0PjIyOTwvdHh0Pjxicj48dHh0PlsxNS43ICDkuKTkuKrov57nu63lj5jph4/nmoTkuIDoh7TmgKfnm7jlhbPns7vmlbBdPC90eHQ+PGJyPjx0eHQ+MjMwPC90eHQ+PGJyPjx0eHQ+WzE1LjggIOS4pOS4quWIhuexu+WPmOmHj+S4gOiHtOaAp+eahEthcHBh57O75pWwXTwvdHh0Pjxicj48dHh0PjIzMTwvdHh0Pjxicj48dHh0PlsxNS44LjEgIOWOn+Wni+i1hOaWmeeahEthcHBh57O75pWwXTwvdHh0Pjxicj48dHh0PjIzMTwvdHh0Pjxicj48dHh0PlsxNS44LjIgIOaxh+aAu+i1hOaWmeeahEthcHBh57O75pWwXTwvdHh0Pjxicj48dHh0PjIzMjwvdHh0Pjxicj48dHh0PlsxNS45ICBDcm9uYmFjaCDOseezu+aVsF08L3R4dD48YnI+PHR4dD4yMzQ8L3R4dD48YnI+PHR4dD5bMTUuMTAgIOWTjeW6lOiDveWKm+WIhuaekF08L3R4dD48YnI+PHR4dD4yMzY8L3R4dD48YnI+PHR4dD5bMTUuMTAuMSAg6YWN5a+55qC35pys6LWE5paZ55qE5ZON5bqU6IO95Yqb5YiG5p6QXTwvdHh0Pjxicj48dHh0PjIzNjwvdHh0Pjxicj48dHh0PlsxNS4xMC4yICDni6znq4vmoLfmnKzotYTmlpnnmoTlk43lupTog73lipvliIbmnpBdPC90eHQ+PGJyPjx0eHQ+MjM3PC90eHQ+PGJyPjx0eHQ+W2R5IDbnq6AgIOiviuaWreivlemqjOeahFJPQ+absue6v108L3R4dD48YnI+PHR4dD4yMzk8L3R4dD48YnI+PHR4dD5bMTYuMSAgUk9D5puy57q/5YiG5p6Q5qaC6L+wXTwvdHh0Pjxicj48dHh0PjIzOTwvdHh0Pjxicj48dHh0PlsxNi4yICBST0Pmm7Lnur/liIbmnpBdPC90eHQ+PGJyPjx0eHQ+MjQxPC90eHQ+PGJyPjx0eHQ+WzE2LjIuMSAg6L+e57ut5Z6L6LWE5paZ55qEUk9D5puy57q/XTwvdHh0Pjxicj48dHh0PjI0MjwvdHh0Pjxicj48dHh0PlsxNi4yLjIgIOacieW6j+WIhuexu+Wei+i1hOaWmeeahFJPQ+absue6v108L3R4dD48YnI+PHR4dD4yNDU8L3R4dD48YnI+PHR4dD5bMTYuMyAg5Lqk5LqS54K55Zu+XTwvdHh0Pjxicj48dHh0PjI0NjwvdHh0Pjxicj48dHh0PlsxNi4zICDlj4LogIPlgLzlm75dPC90eHQ+PGJyPjx0eHQ+MjQ4PC90eHQ+PGJyPjxpbWc+W2h0dHBzOi8vYXNzZXRzLmFsaWNkbi5jb20va2lzc3kvMS4wLjAvYnVpbGQvaW1nbGF6eWxvYWQvc3BhY2ViYWxsLmdpZl08YnI+PHR4dD5bICAgIOWGheWuueS7i+e7jSAgIF08L3R4dD48YnI+PHR4dD5b5pys5Lmm5qC55o2u57uf6K6h5pWZ5a2m55qE54m554K577yM57uT5ZCI5aSn6YeP5a6e5L6L5Lul5b6q5bqP5riQ6L+b55qE5pa55byP5LuL57uNTWVkQ2FsY+i9r+S7tjE3LjbniYjmnKznmoTkvb/nlKjmlrnms5Xlkoznu5/orqHlupTnlKjvvIzlr7nova/ku7bnlYzpnaLjgIHnu5/orqHliIbmnpDnu5Pmnpzlj4rnu5/orqHlm77lvaLlnYfov5vooYzkuobor6bnu4bnmoTku4vnu43jgILmnKzkuablhoXlrrnljIXmi6xNZWRDYWxj5YWl6Zeo44CB5pWw5o2u566h55CG44CB6K6h6YeP6LWE5paZ55qE57uf6K6h5o+P6L+w5LiO5q2j5oCB5oCn5qOA6aqM44CB5YiG57G76LWE5paZ55qE57uf6K6h5YiG5p6Q44CB55u45a+55pWw55qE5Lyw6K6h5LiO5q+U6L6D44CB5pa55beu6b2Q5oCn5qOA6aqM5ZKMdOajgOmqjOOAgeaWueW3ruWIhuaekOOAgemdnuWPguaVsOajgOmqjOOAgeebuOWFs+WIhuaekOOAgeWbnuW9kuOAgeeUn+WtmOWIhuaekOOAgU1ldGHliIbmnpDjgIHov57nu63nm5HmtYvotYTmlpnnmoTluo/liJfmtYvph4/liIbmnpDjgIHmlrnms5Xmr5TovoPlkozor4Tku7fjgIHor4rmlq3or5XpqoznmoRST0Pmm7Lnur/ku6Xlj4rmoLfmnKzlkKvph4/kvLDorqHnrYnvvIzlubblr7nmlbDmja7nmoTnu5Pmnpzlkozlm77lvaLov5vooYzkuobnu5/orqHlrabliIbmnpDkuI7mjqjmlq3jgILmnKzkuaborrLov7DnmoTlrp7kvovmtrXnm5blpJrkuKrkuJPkuJrvvIzog73lpJ/mu6HotrPkuI3lkIzkuJPkuJror7vogIXnmoTpnIDopoHjgILkuabkuK3nmoTmiYDmnInkvovpopjmlbDmja7ku6Xlj4rku6XnlLXlrZDkuabmoLzlvI/mj5DkvpvnmoTmsYnoi7HjgIHoi7HmsYnor43msYflr7nnhafooajlnYflj6/lnKjljY7kv6HmlZnogrLotYTmupDnvZF3d3cuaHhlZHUuY29tLmNu5YWN6LS55LiL6L2977yM5Lul5pa55L6/5pWZ5biI5o6I6K++44CB6K+76ICF6L+b6KGM5pON5L2c57uD5Lmg5ZKM5p+l6K+i44CCXTwvdHh0PjwvZGl2Pg==
Продавец:鑫达图书专营店
Рейтинг:
Всего отзывов:0
Положительных:0
Добавить в корзину
- Информация о товаре
- Фотографии
[https://assets.alicdn.com/kissy/1.0.0/build/imglazyload/spaceball.gif]
[ 商品参数 ]
[MedCalc统计分析方法及应用]
[https://img.alicdn.com/imgextra/i4/4093052206/O1CN01a1JFSV1SAODQMTJs9_!!4093052206.jpg]
[ 定价 ]
59.00
[ 出版社 ]
[电子工业出版社]
[ 版次 ]
1
[ 出版时间 ]
[2018年05月]
[ 开本 ]
[16开]
[ 作者 ]
[李志辉,杜志成]
[ 装帧 ]
[平装-胶订]
[ 页数 ]
308
[ 字数 ]
506000
[ ISBN编码 ]
9787121338694
[https://assets.alicdn.com/kissy/1.0.0/build/imglazyload/spaceball.gif]
[ 目录 ]
[dy 章 MedCalc入门]
1
[1.1 MedCalc主要功能]
1
[1.1.1 资料管理与计算]
1
[1.1.2 统计功能]
1
[1.1.3 统计图形]
3
[1.2 MedCalc界面]
3
[1.2.1 主窗口]
3
[1.2.2 对话框]
5
[1.2.3 弹出对话框]
6
[1.2.4 中英文界面的设置]
7
[1.3 MedCalc支持的数据类型]
7
[1.4 MedCalc文件类型]
8
[1.5 MedCalc工作表的基本操作和数据录入]
9
[1.5.1 工作表介绍]
9
[1.5.2 数据输入实例]
10
[1.5.3 设置数据类型]
11
[第2章 数据管理]
12
[2.1 按行排序]
12
[2.2 排除数据]
12
[2.3 填充列]
13
[2.4 堆叠列]
14
[2.5 创建随机样本]
16
[2.6 创建组]
17
[2.6.1 创建分位数组]
17
[2.6.2 创建随机组]
18
[2.6.3 创建用户定义组]
18
[2.7 个案排秩]
19
[2.8 百分位数排秩]
20
[2.9 计算z得分]
20
[2.10 幂变换]
21
[2.11 病例-对照匹配]
22
[2.12 编辑变量列表]
24
[2.13 编辑筛选条件列表]
25
[2.14 个案标识变量]
26
[2.15 设定数据输入方向]
27
[第3章 计量资料的统计描述与正态性检验]
28
[3.1 计量资料的汇总统计量]
28
[3.1.1 原始资料的汇总统计量与正态性检验]
28
[3.1.2 对数变换资料的汇总统计量]
35
[3.2 计量资料的异常值检测]
36
[3.3 分布图]
39
[3.3.1 直方图]
39
[3.3.2 累积频率分布图]
40
[3.3.3 正态图与Q-Q图]
43
[3.3.4 点图]
44
[3.3.5 箱形图]
46
[第4章 分类资料的统计分析]
48
[4.1 χ2检验]
48
[4.1.1 单变量χ2拟合优度检验]
48
[4.1.2 两独立样本的Pearson χ2检验]
50
[4.1.3 有序R×2表资料的χ2趋势检验]
53
[4.2 四格表资料的Fisher 检验]
53
[4.2.1 原始资料的Fisher 检验]
54
[4.2.2 汇总资料的Fisher 检验]
54
[4.3 配对四格表资料的McNemar检验]
55
[4.3.1 原始资料的McNemar检验]
55
[4.3.2 汇总资料的McNemar检验]
56
[4.4 完全随机区组设计二分类资料的Cochran Q检验]
57
[4.5 四格表资料的相对危险度与优势比]
58
[4.5.1 队列研究的相对危险度]
58
[4.5.2 临床试验的需治疗人数]
60
[4.5.3 病例-对照研究的优势比]
62
[4.6 分类资料的条图]
64
[4.6.1 简单条图]
64
[4.6.2 复式条图]
65
[4.6.3 分段条图]
66
[4.6.4 构成比条图]
67
[第5章 相对数的估计与比较]
68
[5.1 比例的估计与比较]
68
[5.1.1 单个比例的区间估计与检验]
68
[5.1.2 两个独立样本比例的比较]
69
[5.2 比率的区间估计与检验]
69
[5.2.1 比率的置信区间]
69
[5.2.2 两个独立样本比率的比较]
71
[第6章 方差齐性检验和t检验]
72
[6.1 独立样本方差齐性的F检验]
72
[6.1.1 原始资料方差齐性的F检验]
72
[6.1.2 汇总资料方差齐性的F检验]
73
[6.2 单样本t检验]
74
[6.2.1 原始资料的单样本t检验]
74
[6.2.2 汇总资料的单样本t检验]
75
[6.3 独立样本t检验]
76
[6.3.1 方差齐性资料的独立样本t检验]
76
[6.3.2 方差不齐资料的独立样本t' 检验]
79
[6.3.3 几何平均值的独立样本t检验]
80
[6.3.4 汇总资料的独立样本t检验]
82
[6.4 配对样本t检验]
83
[第7章 方差分析]
86
[7.1 完全随机设计资料的单因素方差分析]
86
[7.2 A×B析因设计资料的方差分析]
89
[7.2.1 无交互效应的A×B析因设计资料的方差分析]
90
[7.2.2 有交互效应的A×B析因设计资料的方差分析]
94
[7.3 协方差分析]
96
[7.3.1 完全随机设计资料的协方差分析]
96
[7.3.2 A×B析因设计资料的协方差分析]
99
[7.3.2 多元协方差分析]
100
[7.4 重复测量设计资料的方差分析]
102
[7.4.1 单组重复测量资料的方差分析]
102
[7.4.2 无交互效应两因素重复测量设计资料的方差分析]
105
[7.4.2 有交互效应两因素重复测量设计资料的方差分析]
107
[第8章 非参数检验]
111
[8.1 单样本符号秩和检验]
111
[8.2 独立样本的Mann-Whitney 检验]
112
[8.3 配对样本的Wilcoxon符号秩和检验]
114
[8.4 两个或多个独立样本的Kruskal-Wallis检验]
116
[8.5 多个有序分类样本的Jonckheere-Terpstra趋势检验]
119
[8.6 随机化区组设计资料的Friedman检验]
120
[第9章 相关分析]
123
[9.1 散点图]
123
[9.1.1 包含回归线的简单散点图]
123
[9.1.2 包含LOESS平滑趋势线的散点图]
125
[9.1.3 包含回归线的复式散点图]
127
[9.2 Pearson相关分析]
128
[9.3 两个独立样本相关系数差异的假设检验]
130
[9.4 偏相关分析]
131
[9.5 等级相关分析]
133
[9.5.1 Spearman等级相关分析]
133
[9.5.2 Kendall系数一致性评价]
134
[dy 0章 回归]
136
[10.1 带回归线的散点图]
136
[10.1.1 带简单回归线的散点图]
136
[10.1.2 带曲线回归线的散点图]
138
[10.2 两变量间的回归分析]
144
[10.2.1 两变量的线性回归分析]
144
[10.2.2 两条回归直线的比较]
146
[10.2.3 曲线拟合]
148
[10.3 多重线性回归]
148
[10.3.1 强迫引入法]
149
[10.3.2 逐步回归法]
151
[10.4 二值Logistic回归]
153
[10.5 剂量反应的概率单位回归]
157
[10.5.1 原始资料的概率单位回归]
158
[10.5.2 汇总资料的概率单位回归]
160
[10.6 非线性回归]
162
[dy 1章 生存分析]
166
[11.1 Kaplan-Meier生存分析]
167
[11.1.1 单样本生存资料的Kaplan-Meier法]
167
[11.1.2 生存曲线比较的log rank检验]
169
[11.1.3 生存曲线的log rank趋势检验]
171
[11.2 Cox比例风险回归模型]
173
[11.2.1 Cox回归PH假定的判定方法]
173
[11.2.2 建立Cox比例风险回归模型]
175
[dy 2章 Meta分析]
180
[12.1 Meta分析概述]
180
[12.2 连续型资料的Meta分析]
181
[12.3 相关系数的Meta分析]
185
[12.4 比例的Meta分析]
187
[12.5 相对危险度的Meta分析]
188
[12.6 风险差的Meta分析]
191
[12.7 优势比的Meta分析]
192
[12.8 ROC曲线下面积的Meta分析]
194
[12.9 通用逆方差法的Meta分析]
195
[dy 3章 连续监测资料的序列测量分析]
198
[dy 4章 医学参考值范围的制定]
202
[14.1 一般资料的医学参考值范围制定]
202
[14.2 年龄别参考值范围的制定]
205
[dy 5章 方法比较和评价]
209
[15.1 连续变量一致性评价的Bland-Altman图]
209
[15.1.1 两个连续变量一致性评价的Bland-Altman图]
210
[15.1.2 两种测量方法多次测量结果的Bland-Altman图]
212
[15.1.3 多个连续变量一致性评价的Bland-Altman图]
215
[15.2 连续变量一致性评价的山形图]
217
[15.2.1 多个连续变量一致性评价的山形图]
217
[15.2.2 三个连续变量一致性评价的山形图]
218
[15.3 两个连续变量一致性评价的Deming回归]
219
[15.3.1 两种方法单次测量结果的Deming回归]
219
[15.3.2 两种方法重复两次测量结果的Deming回归]
221
[15.4 两个连续变量一致性评价的Passing-Bablok回归]
222
[15.5 两次测量中的变异系数]
226
[15.6 多个连续变量或有序变量一致性评价的类内相关系数]
227
[15.6.1 单因素随机模型设计资料的ICC]
227
[15.6.2 两因素混合模型设计资料的ICC]
229
[15.6.3 两因素随机模型设计资料的ICC]
229
[15.7 两个连续变量的一致性相关系数]
230
[15.8 两个分类变量一致性的Kappa系数]
231
[15.8.1 原始资料的Kappa系数]
231
[15.8.2 汇总资料的Kappa系数]
232
[15.9 Cronbach α系数]
234
[15.10 响应能力分析]
236
[15.10.1 配对样本资料的响应能力分析]
236
[15.10.2 独立样本资料的响应能力分析]
237
[dy 6章 诊断试验的ROC曲线]
239
[16.1 ROC曲线分析概述]
239
[16.2 ROC曲线分析]
241
[16.2.1 连续型资料的ROC曲线]
242
[16.2.2 有序分类型资料的ROC曲线]
245
[16.3 交互点图]
246
[16.3 参考值图]
248
[https://assets.alicdn.com/kissy/1.0.0/build/imglazyload/spaceball.gif]
[ 内容介绍 ]
[本书根据统计教学的特点,结合大量实例以循序渐进的方式介绍MedCalc软件17.6版本的使用方法和统计应用,对软件界面、统计分析结果及统计图形均进行了详细的介绍。本书内容包括MedCalc入门、数据管理、计量资料的统计描述与正态性检验、分类资料的统计分析、相对数的估计与比较、方差齐性检验和t检验、方差分析、非参数检验、相关分析、回归、生存分析、Meta分析、连续监测资料的序列测量分析、方法比较和评价、诊断试验的ROC曲线以及样本含量估计等,并对数据的结果和图形进行了统计学分析与推断。本书讲述的实例涵盖多个专业,能够满足不同专业读者的需要。书中的所有例题数据以及以电子书格式提供的汉英、英汉词汇对照表均可在华信教育资源网www.hxedu.com.cn免费下载,以方便教师授课、读者进行操作练习和查询。]
[https://img.alicdn.com/imgextra/i4/4093052206/O1CN01a1JFSV1SAODQMTJs9_!!4093052206.jpg]
[https://assets.alicdn.com/kissy/1.0.0/build/imglazyload/spaceball.gif]
[https://assets.alicdn.com/kissy/1.0.0/build/imglazyload/spaceball.gif]